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Abstract

The ROMIO implementation of the MPI-IO standard provides a portable
infrastructure for use on top of any number of different underlying stor-
age targets. These targets vary widely in their capabilities, and in some
cases additional effort is needed within ROMIO to support all MPI-IO
semantics. Two aspects of the interface that can be problematic to imple-
ment are MPI-IO atomic mode and the shared file pointer access routines.
Atomic mode requires enforcing strict consistency semantics, while shared
file pointer routines require communication and coordination in order to
atomically update a shared resource. For some file systems, native locks
may be used to implement these features, but not all file systems have lock
support. In this work, we describe algorithms for implementing efficient
mutex locks using MPI-1 and the one-sided capabilities from MPI-2. We
then show how these algorithms may be used to implement both MPI-
IO atomic mode and shared file pointer methods for ROMIO without
requiring any features from the underlying file system. We evaluate the
performance of these algorithms and show that they can outperform tra-
ditional file system lock approaches. Because of the portable nature of
these algorithms, they are likely useful in a variety of situations where
distributed locking or coordination is needed in the MPI-2 environment.

1 Introduction

MPI-IO [20] provides a standard interface for MPI programs to access storage
in a coordinated manner. Implementations of MPI-IO, such as the portable
ROMIO implementation [17] and the implementation for AIX GPFS [14] have
aided in the widespread availability of MPI-IO. These implementations in par-
ticular include a collection of optimizations [16, 14, 10] that leverage MPI-IO
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features to obtain higher performance than would be possible with the less ca-
pable POSIX interface [8].

One component of the MPI-IO interface that has been difficult to imple-
ment in a portable manner is the atomic mode. This mode provides a more
strict consistency semantic than the default MPI-IO mode or even POSIX I/O.
Atomic mode is a very useful capability for applications and higher-level I/O
components that need to share data through a file. One good example where
atomic mode may be helpful is in HDF5, where internal data stored in the file
is used by all processes to place application data in a consistent manner. In
ROMIO the atomic mode is implemented through the use of file system locks
where available. Unfortunately for file systems without locking systems, such
as Lustre and PVFS, atomic mode is not supported.

Another feature that the MPI-IO interface provides is shared file pointers.
A shared file pointer is an offset that is updated by any process accessing the
file in this mode. This feature organizes accesses to a file on behalf of the
application in such a way that subsequent accesses do not overwrite previous
ones. This is particularly useful for logging purposes: it eliminates the need for
the application to coordinate access to a log file.

Obviously coordination must still occur; it just happens implicitly within
the I/O software rather than explicitly in the application. Only a few historical
file systems have implemented shared file pointers natively (Vesta [5], PFS [9],
CFS [13], SPIFFI [6]) and they are not supported by parallel file systems being
deployed today. Thus, today shared file pointer access must be provided by the
MPI-IO implementation.

With the recent full implementation of MPI-2 one-sided operations in MPICH2
and other MPI packages, a new opportunity has arisen. By building up mutex
locks from one-sided and point-to-point operations, we can implement atomic
mode semantics and the shared file pointer routines without file system support.

This paper discusses a novel method for supporting shared file pointer access
within a MPI-IO implementation. This method relies only on MPI-1 and MPI-2
communication functionality and not on any storage system features, making
it portable across any underlying storage. Sections 2 and 3 discuss the MPI-
IO interface standard, the portions of this related to atomic mode and shared
file pointers, and the way atomic mode and shared file pointer operations are
supported in the ROMIO MPI-IO implementation. Section 4 describes our new
approach to supporting atomic mode and shared file pointer operations within
an MPI-IO implementation. Three algorithms are used, one for atomic mode
syncronization, one for independent shared mode operations and a third for for
collective ordered calls. Section 5 evaluates the performance of our approaches
on MPI-IO benchmarks. Section 6 concludes and points to future work in this
area.
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2 MPI-IO Atomic Mode

The MPI-IO atomic mode guarantees sequential consistency of writes to the
same file by a group of processes who have previously collectively opened the file.
It also guarantees that these writes will be immediately visible by other processes
in this group. This semantic is primarily used for two purposes: simplifying
communication through a shared file, and guaranteeing atomicity of writes to
overlapping regions. The MPI-IO standard encourages applications to use the
more relaxed default MPI-IO consistency semantics when peak performance is
desired, as the MPI-IO implementation can more easily optimize the requests.
Even though atomic mode might not be the fastest way to access the underlying
file system, some programs need this capability, so it is important that we
support the standard in its entirety where possible.

2.1 Atomic Mode in ROMIO

The ROMIO implementation builds MPI-IO on top of the I/O API supported
by the underlying file system. For many file systems, this interface is POSIX.
While the POSIX I/O read, write, readv, and writev calls also guarantee
sequential consistency, they cannot describe all possible I/O operations through
the MPI-IO interface, particularly ones with noncontiguous data in file. The
lio listio function available as part of the POSIX real-time extensions is also
inadequate because the list of operations are considered independent – there is
no guarantee of atomicity with respect to the entire collection. Because of these
characteristics, it is necessary to impose atomicity through additional means.
For these file systems ROMIO uses fcntl locks, locking contiguous regions
encompassing all the bytes that the process will access.

File systems such as PVFS v1 [4] and PVFS v2 do not guarantee atomicity
of operations at all, instead relying on the MPI-IO layer to provide these guar-
antees. Other types of storage back-ends, such as GridFTP [1] and Logistical
Networks [2] do not have locking capabilities either. The NFS file system pro-
vides advisory lock routines but makes no guarantees that locks will be honored
across processes. In the existing ROMIO implementation atomic mode is simply
not supported for these types of storage.

In order to implement atomic mode without file system support, we need
to build a mechanism for coordinating access to a file, or regions of a file. Our
approach is to provide a mutex lock for the entire file coupled with an efficient
system for notifying subsequent processes on lock release. We will describe how
we implement these capabilities in Section 4.

3 MPI-IO Shared File Pointers

The MPI-IO interface standard provides three options for referencing the loca-
tion in the file at which I/O is to be performed: explicit offsets, individual file
pointers, and shared file pointers. In the explicit offset calls the process provides
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an offset that is to be used for that call only. In the individual file pointer calls
each process uses its own internally stored value to denote where I/O should
start; this value is referred to as a file pointer. In the shared file pointer calls
each process in the group that opened the file performs I/O starting at a single,
shared file pointer.

Each of these three ways of referencing locations have both independent
(non-collective) and collective versions of read and write calls. In the shared file
pointer case the independent calls have the shared suffix (e.g., MPI File read shared),
while the collective calls have the ordered suffix (e.g., MPI File read ordered).
The collective calls additionally guarantee that accesses will be ordered by rank
of the processes. We will refer to the independent calls as the shared mode
accesses and the collective calls as the ordered mode accesses.

3.1 Synchronization of Shared File Pointers in ROMIO

The fundamental problem in supporting shared file pointers at the MPI-IO layer
is that the implementation never knows when some process is going to perform a
shared mode access. This information is important because the implementation
must keep a single shared file pointer value somewhere, and it must access and
update that value whenever a shared mode access is made by any process.

When ROMIO was first developed in 1997, most MPI implementations pro-
vided only MPI-1 functionality (point-to-point and collective communication),
and these implementations were not thread safe. Thread safety makes it eas-
ier to implement algorithms that rely on nondeterministic communication, such
as shared-mode accesses, because a separate thread can be used to wait for
communication related to shared file pointer accesses. Without this capability,
a process desiring to update a shared file pointer stored on a remote process
could stall indefinitely waiting for the remote process to respond. The reason is
that the implementation could check for shared mode communication only when
an MPI-IO operation was called. These constraints led the ROMIO developers
to look for other methods of communicating shared file pointer changes.

Processes in ROMIO use a second hidden file containing the current value
for the shared file pointer offset. A process reads from or writes into this file
the value of the shared file pointer file before carrying out I/O routines. The
hidden file acts as a communication channel among all the processes. File system
locks serialize access and prevent simultaneous updates to the hidden file. This
approach works well as long as the file system meets two conditions:

1. The file system must support file locks

2. The file system locks must prevent access from other processes, and not
just from other file accesses in the same program.

As discussed earlier, several common file systems do not provide file sys-
tem locks. On such file systems ROMIO cannot correctly implement shared
file pointers using the hidden file approach and currently must disable support
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if (myrank == homerank) {
MPI_Win_create(waitlistaddr , nprocs , 1,

MPI_INFO_NULL , comm , &waitlistwin );
}
else {

MPI_Win_create(NULL , 0, 1, MPI_INFO_NULL ,
comm , &waitlistwin );

}

Figure 1: MPI pseudocode for creating windows in one-sided algorithm. The
“homerank” process hosts the actual memory, but all processes can access it.

for this feature. For this reason ROMIO needs a portable mechanism for syn-
chronizing access to a shared file pointer that does not rely on any underlying
storage characteristics.

4 Synchronization and Coordination with One-
Sided Operations

The MPI-2 specification adds a new set of communication primitives, called the
one-sided or remote memory access (RMA) functions, that allow one process
to modify the contents of remote memory without the remote process inter-
vening. These passive target operations provide the basis on which to build
a portable synchronization method within an MPI-IO implementation. This
synchronization primitive can then be used to coordinate accesses when imple-
menting atomic mode and shared file pointers.

MPI-2 one-sided operations do not provide a way to atomically read and
modify a remote memory region. We can, however, construct an algorithm
based on existing MPI-2 one-sided operations that lets a process perform an
atomic modification. For atomic mode, we want to coordinate access to the
entire file. In the shared file pointer case, we want to serialize access to the
shared file pointer value.

Before performing one-sided transfers, a collection of processes must first
define a window object. This object contains a collection of memory windows,
each associated with the rank of the process on which the memory resides.
After defining the window object, MPI processes can then perform put, get,
and accumulate operations into the memory windows of the other processes.
Figure 1 gives pseudocode for how this might be done.

MPI passive target operations are organized into access epochs that are
bracketed by MPI Win lock and MPI Win unlock calls. Clever MPI implemen-
tations [18] will combine all the data movement operations (puts, gets, and ac-
cumulates) into one network transaction that occurs at the unlock. The MPI-2
standard allows implementations to optimize RMA communication by carry-
ing out operations in any order at the end of an epoch. Implementations take
advantage of this fact to achieve much higher performance [18]. Thus, within
one epoch a process cannot read a byte, modify that value, and write it back
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Figure 2: Depiction of MPI windows.

because the standard makes no guarantee about the order of the read-modify-
write steps. This aspect of the standard complicates, but does not prevent, the
use of one-sided routines to build our data structures for coordination among
MPI processes.

Implementing locks with MPI one-sided operations poses an interesting chal-
lenge: the standard does not define the traditional test-and-set and fetch-and-
increment operations. In fact, no mechanism exists for both reading and writ-
ing a single memory region in an atomic manner in the MPI scheme. Two
approaches are outlined in [7]. These approaches have some disadvantages,
particularly in that they require many remote one-sided operations and poll on
remote memory regions. Our approach requires only a few one-sided operations,
and makes no use of polling.

At a high level, our algorithm is simple. A process that wants to acquire
the lock first adds itself to a list of processes waiting for the lock. If the process
is the only one in the list, then it has acquired the lock. If not, it will wait for
notification that the lock has been passed on to it. Processes releasing the lock
are responsible for notifying the next waiting process (if any) at lock release
time.

The algorithms presented here were influenced by the MCS lock [12], an
algorithm devised for efficient mutex locks in shared memory systems. Like
the MCS lock, we carry out O(1) network transactions per lock acquisition.
However, we are not able to meet their achievement of constant memory size
per lock, mainly due to the constraint in MPI of not reading and writing to the
same memory location in a single access epoch. Our use of MPI communication,
and the approach we use for organizing memory windows, are unique to our
algorithms. This general approach has been used in a simulation of a portable
atomic mode algorithm [15] and a simulated shared file pointer access [11]. Here
we elaborate upon both approaches, incorporate them into ROMIO, and analyze
behavior with actual MPI-IO programs.

4.1 The Hybrid Point-to-Point and One-Sided approach

Were we to solely use one-sided operations, we would end up polling on a par-
ticular byte to know when another process released the lock. While doing so
minimizes remote memory access, we would expect that spinning on local vari-
ables would waste many CPU cycles. This can be particularly important in
systems where the memory bus is shared with other processors or processors
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/* add self to waitlist */
val = 1;
MPI_Win_lock(MPI_LOCK_EXCLUSIVE , homerank , 0,

waitlistwin );
MPI_Get(waitlistcopy , nprocs -1, MPI_BYTE ,

homerank , 0, 1, waitlisttype , waitlistwin );
MPI_Put (&val , 1, MPI_BYTE , homerank , myrank ,

1, MPI_BYTE , waitlistwin );
MPI_Win_unlock(homerank , waitlistwin );

/* check to see if lock is already held */
for (i=0; i < nprocs -1 && waitlistcopy[i] == 0; i++);
if (i < nprocs - 1) {

/* wait for notification */
MPI_Recv(NULL , 0, MPI_BYTE , MPI_ANY_SOURCE ,

WAKEUPTAG , comm , MPI_STATUS_IGNORE );
}

Figure 3: MPI pseudocode for obtaining lock in hybrid algorithm.

are oversubscribed (i.e. more MPI processes than physical processors). One
solution would be to use a back-off algorithm to mitigate CPU utilization, but
that would incur additional latency in our lock acquisition.

Fundamentally, we want one process to inform another that it now owns
the lock. Because we are in an MPI environment, we have a very effective
mechanism for implementing notification: point-to-point operations. We will
call this algorithm, which uses both MPI-1 point-to-point and MPI-2 one-sided
operations, the hybrid algorithm.

Our algorithms make use of the following data structure. We define a window
object with an N-byte waitflag array and an MPI Offset-sized sharedfp, both
residing on a single process (Figure 2). In our discussion we will assume that this
data structure is stored on process 0, but these structures could be distributed
among different processes to balance the memory requirements if many files were
being accessed. As we will see, even though atomic mode, shared file pointers,
and ordered mode accesses will access this data structure in different ways, this
data structure contains all the information we need for the three modes.

Each byte in the waitflag array corresponds to a process. A process will
request a lock (Figure 3) by putting a 1 in the byte corresponding to its rank in
the communicator used to open the file. Doing so effectively adds it to the list
of processes that want to access the file. In the same access epoch, the process
will get the remaining N-1 bytes of waitflag. Thus, at the end of the epoch, a
process knows the value of all N bytes of waitflag array.

Should a process find the waitflag array contains other 1 values, then some
other process has the lock. The process will then call MPI Recv and block until
awoken by the lock-holding process.

If the waitflag array contains no other 1 values, then no other process
is waiting for the lock. The process can proceed to access the file. When it
releases the lock (Figure 4), it will initiate a second access epoch, placing a 0
in the corresponding byte of the waitflag array. During that second access
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/* remove self from waitlist */
MPI_Win_lock(MPI_LOCK_EXCLUSIVE , homerank , 0,

waitlistwin );
MPI_Get(waitlistcopy , nprocs -1, MPI_BYTE ,

homerank , 0, 1, waitlisttype , waitlistwin );
MPI_Put (&val , 1, MPI_BYTE , homerank , myrank ,

1, MPI_BYTE , waitlistwin );
MPI_Win_unlock(homerank , waitlistwin );

for (i=0; i < nprocs -1 && waitlistcopy[i] == 0; i++);
if (i < nprocs - 1) {

int nextrank = myrank;

/* find the next rank waiting for the lock */
while (nextrank < nprocs -1 &&

waitlistcopy[nextrank] == 0) nextrank ++;
if (nextrank < nprocs - 1) {

nextrank ++; /* nextrank is off by one */
}
else {

nextrank = 0;
while (nextrank < myrank &&

waitlistcopy[nextrank] == 0) nextrank ++;
}

/* notify next rank with zero -byte message */
MPI_Send(NULL , 0, MPI_BYTE , nextrank , WAKEUP , comm);

}

Figure 4: MPI pseudocode for releasing lock in hybrid algorithm.

epoch, the process will also get the remaining bytes of waitflag. If it finds a
process waiting for the lock, it will call MPI Send and wake it up.

Notification is handled by a single, simple MPI Send on the process releasing
the lock and by a MPI Recv on the process waiting for notification. Because
the waiting process does not know who will notify it that it now owns the lock,
MPI ANY SOURCE is used to allow the receive operation to match any sender. A
zero-byte message is used because all we are really interested in is synchroniza-
tion; the arrival of the message is all that is needed.

4.2 Shared Mode Synchronization

The MPI-2 standard makes no promises as to the order of concurrent shared
mode accesses. Additionally, the implementation does not need to serialize
access to the file system, only the value of the shared file pointer. After a process
updates the value of the file pointer, it can carry out I/O while the remaining
processes attempt to gain access to the shared file pointer. By observing these
restrictions, we can devise an approach that minimizes the time during which
any one process has exclusive access to the shared file pointer.

In our shared mode approach, we use the waitflag array to synchronize
access to the shared file pointer. Figure 5 gives pseudocode for acquiring the
shared file pointer, and Figure 6 demonstrates how we update the shared file
pointer value.
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val = 1; /* add self to waitlist */
MPI_Win_lock(MPI_LOCK_EXCLUSIVE , homerank , 0, waitlistwin );
MPI_Get(waitlistcopy , nprocs -1, MPI_BYTE , homerank , FP_SIZE , 1,

waitlisttype , waitlistwin );
MPI_Put (&val , 1, MPI_BYTE , homerank , FP_SIZE + myrank , 1, MPI_BYTE ,

waitlistwin );
MPI_Get(fpcopy , 1, fptype , homerank , 0, 0, fptype , waitlistwin );
MPI_Win_unlock(homerank , waitlistwin );

/* check to see if lock is already held */
for (i=0; i < nprocs -1 && waitlistcopy[i] == 0; i++);
if (i < nprocs - 1) {

/* wait for notification */
MPI_Recv (&fpcopy , 1, fptype , MPI_ANY_SOURCE , WAKEUPTAG , comm ,

MPI_STATUS_IGNORE );
}

Figure 5: MPI pseudocode for acquiring access to the shared file pointer.

Just like the atomic mode case, a process requests a lock by putting a 1 in the
corresponding byte in the waitlistwin. In the same access epoch the process
gets the remaining N-1 bytes of waitflag and the sharedfp value. (For atomic
mode, we can skip the sharedfp value, since our atomic mode serializes access
to the entire file). This combination effectively implements a test and set. If a
search of waitflag finds no other 1 values, then the process has permission to
access the shared file pointer, and it already knows what that value is without
another access epoch, having optimistically gotten that value at the same time
as it got the N-1 bytes of the waitflag array.

In this case the process saves the current shared file pointer value locally
for subsequent use in I/O. It then immediately performs a second access epoch
(Figure 6). In this epoch the process updates sharedfp, puts a zero in its
corresponding waitflag location, and gets the remainder of the waitflag array.
Following the access epoch the process searches the remainder of waitflag. If
all the values are zero, then no processes are waiting for access. If there is a
1 in the array, then some other process is waiting. For fairness the first rank
after the current process’s rank is selected to be awakened, and a point-to-point
send (MPI Send) is used to notify the process that it may now access the shared
file pointer. The contents of the send is the updated shared file pointer value;
this optimization eliminates the need for the new process to reread sharedfp.
(For atomic mode, the send is carried out with a zero-byte payload.) Once the
process has released the shared file pointer in this way, it performs I/O using
the original, locally-stored shared file pointer value. Again, by moving I/O after
the shared file pointer update, we minimize the length of time the shared file
pointer is held by any one process.

If during the first access epoch a process finds a 1 in any other byte, some
other process has already acquired access to the shared file pointer. The re-
questing process then calls MPI Recv with MPI ANY SOURCE to block until the
process holding the shared file pointer notifies it that it now has permission
to update the pointer and passes along the current value. It is preferable to
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val =0; /* remove self from waitlist */
MPI_Win_lock(MPI_LOCK_EXCLUSIVE , homerank , 0, waitlistwin );
MPI_Get(waitlistcopy , nprocs -1, MPI_BYTE , homerank , FP_SIZE , 1,

waitlisttype , waitlistwin );
MPI_Put (&val , 1, MPI_BYTE , homerank , FP_SIZE + myrank , 1,

MPI_BYTE , waitlistwin );
MPI_PUT (&fpcopy , 1, fptype , homerank , 0, 1, fptype , waitlistwin );
MPI_Win_unlock(homerank , waitlistwin );

for (i=0; i < nprocs -1 && waitlistcopy[i] == 0; i++);
if (i < nprocs - 1) {

int nextrank = myrank;

/* find the next rank waiting for the lock */
while (nextrank < nprocs -1 && waitlistcopy[nextrank] == 0) nextrank ++;
if (nextrank < nprocs - 1) {

nextrank ++; /* nextrank is off by one */
}
else {

nextrank = 0;
while (nextrank < myrank && waitlistcopy[nextrank] == 0) nextrank ++;

}
/* notify next rank with zero -byte message */
MPI_Send (&fpcopy , 1, fptype , nextrank , WAKEUPTAG , comm);

}

Figure 6: MPI pseudocode for updating shared file pointer and (if needed)
waking up the next process.

use point-to-point operations for this notification step, because they allow the
underlying implementation to best manage making progress. We know, in the
case of the sender, that the process we are sending to has posted, or will very
soon post, a corresponding receive. Likewise, the process calling receive knows
that very soon some other process will release the shared file pointer and pass
it to another process. The alternative, polling using one-sided operations, has
been shown less effective [15].

4.3 Ordered Mode Synchronization

Ordered mode accesses are collective; in other words, all processes participate
in them. The MPI-IO specification guarantees that accesses in ordered mode
will be ordered by rank for these calls: the I/O from a process with rank N
will appear in the file after the I/O from all processes with a lower rank (in the
write case). However, the actual I/O need not be carried out sequentially. The
implementation can instead compute a priori where each process will access the
file and then carry out the I/O for all processes in parallel.

Section 9.4.4.2 of the MPI-2.0 standard places several restrictions on collec-
tive I/O with shared file pointers. The most important one is that the applica-
tion ensure all outstanding independent I/O (e.g. shared mode) routines have
completed before initiating collective I/O (e.g. ordered mode) ones. This re-
striction simplifies the implementation of the ordered mode routines. However,
the standard also states that
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Process 0 Process 1 through (N minus 2) Process (N minus 1)
Lock
MPI Get
Unlock
MPI Scan MPI Scan MPI Scan

Lock
MPI Put
Unlock

MPI Bcast MPI Bcast MPI Bcast
perform collective I/O perform collective I/O perform collective I/O

Figure 7: Synchronizing in the ordered mode case. Process 0 acquires the
current value for the shared file pointer. After the call to MPI Scan, process
(N − 1) knows the final value for the shared file pointer after the I/O completes
and can MPI Put the new value into the window. Collective I/O can then be
carried out in parallel with all processes knowing their appropriate offset into
the file. An MPI Bcast ensures that the shared file pointer value is updated
before any process exits the call.

in order to prevent subsequent shared offset accesses by the same
processes from interfering with this collective access, the call might
return only after all the processes within the group have initiated
their accesses. When the call returns, the shared file pointer points
to the next etype accessible.

This statement indicates that the implementation should guarantee that changes
to the shared file pointer have completed before allowing the MPI-IO routine to
return.

Figure 7 outlines our algorithm for ordered mode. Process 0 uses a single
access epoch to get the value of the shared file pointer. Since the value is stored
locally, the operation should complete with particularly low latency. While we
use the same data structure for both shared mode and ordered mode accesses,
note that ordered mode does not need to access waitlist at all, because the
MPI specification leaves it to the application not to be performing shared mode
accesses at the same time. All processes can determine, based on their local
datatype and count parameters, how much I/O they will carry out. In the call
to MPI Scan, each process adds this amount of work to the ones before it. After
this call completes, each process knows its effective offset for subsequent I/O.
The (N − 1)th process can compute the new value for the shared file pointer by
adding the size of its access to the offset it obtained during the MPI Scan. It
performs a one-sided access epoch to put this new value into sharedfp, again
ignoring the waitlist.

To ensure that a process doesn’t race ahead of the others and start doing
I/O before the last process can update the shared file pointer, the (N − 1)th
process performs a MPI Bcast of one byte after updating the shared file pointer.
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Figure 8: MPI-IO Atomic mode. Average time per-process to write or read
from file.

All other processes wait for this MPI Bcast, after which they may all safely carry
out collective I/O and then exit the call.

5 Performance Evaluation

We integrated the above approaches in the ROMIO MPI-IO implementation as
found in MPICH2. We carried out experiments on the NCSA Mercury machine.
Mercury is an IA64 Linux cluster with Myrinet interconnect and a GPFS file
system for parallel I/O. MPICH2 was configured to use the new “nemesis”
channel over GM [3]. Our experiments compare performance of several MPI-
IO routines under ROMIO’s older fcntl()-based locking and synchronization
approach to our new RMA-based coordination methods.

5.1 Atomic mode performance

For our atomic mode comparison we instrumented ROMIO’s atomicity test.
This test initializes a file with zeros, then enables atomic mode. One process
writes contiguous data to a file, while all other processes read data from the file.
The process is then repeated with a noncontiguous access pattern. If the file
system and MPI-IO implementation implement MPI-IO atomic mode correctly,
processes should either see all old data or all new data, but never both. Note
that under the default MPI-IO semantics, the results for such an operation
would be undefined.

We plotted results for a contiguous access pattern in Figure 8(a), where we
see similar performance for the two approaches. We would expect contiguous
accesses to be the best case for an fcntl-based approach as the amount of lock
traffic in the contiguous case is significantly smaller than in the noncontiguous
case. Both approaches see decreased performance (increased run time) as the
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Figure 9: MPI-IO shared file pointers. Average time per-process to write or
read from file.

number of processes – and the amount of time processes are waiting for their
turn to take the lock – increases.

When we look at figure 8(b) for the noncontiguous case, however, we see sig-
nificant benefits to carrying out our synchronization via one-sided operations.
The fcntl approach can potentially do well with a noncontiguous workload
if the underlying file system implements byte-range locks. Even so, the RMA
approach is superior for two reasons. First, the operations make use of MPI-2
access epochs to carry out the large number of requests more efficiently. The
fcntl system call does not have enough contextual information to be able to
make many optimizations when faced with a large number of requests. Second,
the one-sided messaging traffic is carried out over a high performance intercon-
nect (in this case Myrinet) instead of trying to use the file system as a messaging
layer. While MPI-IO Atomic mode was never intended to be a high performance
mode of operation, we can handle a wider array of access patterns with higher
performance by using one-sided operations.

5.2 Shared file pointer performance

For our shared file pointer analysis we instrumented the shared fp test from
ROMIO. In this test, all processes perform a shared write operation and then
a shared read. While a typical application using shared file pointers would use
variable length blocks, this experiment uses fixed sized records to eliminate any
effects file system block alignment might have on a comparison. The one aspect
we want to examine is the relative performance of the fcntl approach compared
to the one-sided algorithm.

In Figure 9(a) and Figure 9(b) we can see that the one-sided approach both
performs and scales better than the older fcntl approach. As discussed earlier
in this paper, the fcntl approach will make use of a hidden file, and each process
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Figure 10: MPI-IO ordered mode. Average time per-process to write or read
from file.

will update that file with the appropriate value for the shared file pointer. The
latency for a small file I/O operation can often be high. Here again, one-
sided operations benefit from being able to make use of the high performance
network on this cluster instead of trying to communicate through the file system
interface.

5.3 Ordered mode performance

To compare ordered mode accesses, we had to modify the shared fp test to
make use of the collective ordered mode routines. Otherwise, the workload is
similar: all processes write a fixed amount of data to a file, then read it back.
Under a correct implementation, all records will show up in the file, but will
also show up in rank order (i.e. rank 0’s data will show up before rank 1 and
so on).

As is evident in Figures 10(a) and 10(b), the one-sided ordered mode algo-
rithm excels in this situation, delivering much better performance and remark-
able scalability. We can identify three contributing factors. First, under the
fcntl approach each process reads and updates the shared file pointer from
the file system. Our one-sided algorithm stores the file pointer information in
a memory window, not on disk, and so can avoid the overhead of acquiring a
file system lock. Second, and most importantly, the one-sided algorithm takes
advantage of the collective nature of the MPI-IO ordered routines. The memory
window containing the shared file pointer information needs only to be read by
one process and written by one other. Disseminating the appropriate shared file
pointer offset is accomplished with a collective call. Our ordered mode algorithm
can again make effective use of the high performance interconnect on the Mer-
cury cluster, but we also expect that even older or less performant interconnects
would see performance gains.
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6 Conclusions and Future Work

We have presented new algorithms for implementing mutual exclusion with noti-
fication using MPI primitives. Our algorithms are capable of performing locking
and unlocking in two access epochs in the absence of contention, and require
only a single point-to-point message for notification in the event of contention.
The algorithms are also designed to avoid starvation by cycling through ranks.

We implemented these algorithms in ROMIO as an option for implementing
MPI-IO atomic mode and shared file pointers in ROMIO, providing atomic mode
semantics for file systems whose locking subsystems are not yet complete and
for file systems that lack locking subsystems entirely (e.g. PVFS). While our
results compare favorably with the fcntl approach, further investigation will
be necessary to determine if the one-sided approach is in general more scalable
than the locking implementations in some parallel file systems (e.g. GPFS). If
so, we will modify ROMIO to use our scalable algorithm rather than the file
system locks.

While this work has focused specifically on providing a correct and efficient
implementation that is portable across file systems, there are a number of ways
in which this work could be extended if we determined that higher performance
was necessary. One manner in which this system could be improved is through
the detection of non-overlapping file views. File views are the mechanism MPI-
IO uses for specifying a subset of a file that a process will access. When the
file view for a process does not overlap with the file views of other processes,
locking is unnecessary – conflicts will not occur. Because of the complexity of
the MPI datatypes used to describe file views, this is an open research topic.

Another manner in which this work could be enhanced for atomic mode is
through the use of multiple locks to partition a file into independent regions.
Processes could then acquire only the locks needed to access regions that they
were changing, allowing for concurrent access to separate regions. Ideally a
range-based locking approach would be used. While maintaining the shared data
structures necessary to store a list of ranges will undoubtedly require additional
overhead, this approach might lead to an MPI-IO implementation that provides
a level of concurrency and efficiency that beats that of the best file system
locking implementations, eliminating the need for file locks in ROMIO entirely.
Initial work towards this end has been done in [19], but will require further
analysis.

We have demonstrated that this work can outperform fcntl approaches for
up to 128 processes. To handle even more processes (on the order of thousands),
a tree algorithm might be more appropriate, where leaf nodes first acquire an
intermediate lock before acquiring the lock itself. This level of indirection would
limit contention on the byte array. Further testing at scale is necessary to
determine if this extra degree of complexity in the algorithm is warranted.

Our algorithms rely solely on MPI communication, using one-sided, point-
to-point, and collective routines as appropriate. This removes any dependency
on file system features and makes shared file pointer operations an option for
all file systems. Performance in the shared mode case scales as well as can be
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expected, while performance in the ordered mode case scales very well.
Our synchronization routines have been used for MPI-IO atomic mode as

well as MPI-IO shared file pointers. In future efforts we will look at using
these routines to implement extent-based locking and other more sophisticated
synchronization methods.
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